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The intensities of 'difference reflections' of crystals with supercells or of crystals with a modulated 
structure are formulated using 'generalized atomic scattering factors'. The Fourier transform of the 
structure factors of a single set of difference reflections is the sum of the convolutions of the point 
functions representing average atomic positions, with the transforms of the generalized atomic scattering 
factors. The Patterson function of one set of difference reflections is the sum of the convolutions of the 
point functions representing average interatomic vectors, with the convolutions of the transforms of the 
generalized atomic scattering factors. These results are applied in a subsequent paper to Patterson maps 
based on the satellite reflections of a plagioclase feldspar. 

1. Introduction 

There are many crystals with a structure consisting of 
a supercell containing smaller subcells having similar 
arrangements of atoms. In such a case, the diffraction 
pattern consists of a set of relatively strong reflections 
and of one or several sets of relatively weak 'difference 
reflections'. The main reflections carry information 
about the 'average' structure; the difference reflections 
carry information about the structural differences 
between the individual subcells. 

A well known group of crystals having a super- 
structure of this type is the feldspars. In anorthite, for 
example, there are three sets of difference reflections 
(b, c, and d) in addition to the set of main (a) reflec- 
tions. Another interesting and relatively important 
example is the plagioclases, where there are two groups 
of satellite reflections (e and f )  besides the main reflec- 
tions. [For a survey of feldspar structures, see Smith & 
Ribbe (1969).] 

In the present paper, attention is directed to pro- 
perties of the Fourier transforms based on intensities 
or amplitudes of different sets of difference reflections, 
especially if the supercell is a modulated structure. A 
practical application of these results is demonstrated 
in a companion paper immediately following this one. 
The companion paper describes and interprets Patter- 
son maps based on satellite reflection of a plagioclase 
feldspar. 

2. The structure factor 

Let us suppose that a superceU is composed of m =  
N, N2 N3 almost identical subcells. The unit subcell 
is described by vectors a,b,c; the unit-cell edges of the 
sueprcell are Nla, N2b and N3c , where N1, N2 and N3 
are integers. The position and occupancies of  a 
certain atomic site in individual subcells are similar 
but not identical. The position vector of the pth atom 

in the sth subcell is ~p-k-Aps , where ~p is the average 
position vector of the pth atom. Similarly, iffp is the 
average atomic scattering factor associated with the 
pth position, then the atomic scattering factor of the 
pth atom in the sth subcell can be expressed as 
f.(1 + eps). 

If the supercell has n subcells, there are n sets of re- 
flections: n -  1 of them are sets of difference reflections 
and one set comprises the main reflections. If the re- 
ciprocal cell is based on a*, b* and c* (vectors recip- 
rocal to subcell edges), the indices of the main reflec- 
tions are integers and the indices of the difference re- 
flections are fractional. The reciprocal lattice vectors 
corresponding to the main reflections are BH= 
h a * + k b * + / c * ;  for the ath set difference reflections, 
the reciprocal vectors are B ~ = B n + p " ,  where 114= 

m2 m3 m l a * +  b*+  c* and ml,m2,m3 is a set of three 
N1 N2 hra 
integers satisfying 0 < ml < N1, 0 _< m2 < N2 and 0 < ma < 
N3 (Fig. 1). 

The structure factor of a difference reflection be- 
longing to the ath set characterized by reciprocal vec- 
tor B~ = B ,  + pa is 

F ~ =  ~. [ ~  (1 + eps) exp (2niAps. B~) 
p s 

× exp (2nits. B~)lfp exp (2ni~p. B~), (1) 

where the first summation extends over all atoms in 
one subcell and the second summation is over all sub- 
cells in the unit cell. Vector rs is the position vector of 
the origin of the sth subcell in the supercell, rs=  
nla+n2b+nac, where nl, n2 and na are integers and 
exp (2nir~. B~)=exp (2nir~. p")= (bl. 

The term fP Y(1 +eps) exp (2niAp~. B~)¢~= 7t~, has 
m s 

the same meaning that the usual atomic scattering 
factor has in the expression for the structure factor of 
a cell without a superstructure; therefore, we will call 
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it the generalized atomic scattering factor. It depends 
on differences in atomic positions (vectors Av~ ) and on 
differences in electron density (related to ev~ ) among 
individual subcells. If these differences vanish, the 
term becomes zero for the difference reflections (be- 
cause ~@~ =0),  and it degenerates intofv for the main 

$ 

reflections. Furthermore, it is different for different 
sets of difference reflections because of the factors @~. 

3. Fourier transforms of  structure factors of  
difference reflections 

The Fourier transform of structure factors of difference 
reflections belonging to the ath set is 

m a 
"Q(rl) = -~ ~"~  ~p exp (2ni(~ v -  11). B~), (2) 

H p 

where the first summation extends over all reflections 
of the ath set, ~u~, is the generalized atomic scattering 
factor as defined in the last section and V is the volume 
of a subcell. 

Using the convolution theorem, equation (2) be- 
comes 

"Q01)= ~. R~ • P~,, (3) 
P 

where 

and 

1 ~, ~u~, exp (-2ni~!. B~t) R~ =-/7 ,, 

P~, = m ~ exp (2n i (~p-n ) .  B~). 
H 

R~, is the Fourier transform of the generalized atomic 
scattering factor. It has, therefore, the same meaning 
that the atomic electron density has in a usual Fourier 
map. In the limiting case where displacements and 
substitutions vanish, it transforms into an electron den- 
sity distribution function for the main reflections, and 
it is zero for the difference reflections. Function P~, can 
be expressed as the distribution of point functions J: 

P~, = ~. J ({p -  11 + r~)q) ~ *, (4) 
$ 

where {v are confined to a single subcell, vectors rs are 
position vectors of the origins of individual subcells 
and phase factors q)~* are the complex conjugates of 
phase factors introduced in {} 2. 

Let us return to R~, the Fourier transform of the 
generalized atomic factor ~u~. By inserting 

7J~= _fe ~ (1 + ev~ ) exp (2niav~. B~)q~ 

into 

'1 R~= -~- ~ 0 1 )  exp (-2~i~1.  B~)dV,~, 

we obtain 
1 R;= ~-f ~ ~g(1 +e,3e,(n- A~3, (5) 

where Qp is the electron distribution function of the 
pth atom. 

Let us now examine a hypothetical, two-dimensional 
example of a structure consisting of four subcells, each 
having two atoms. Atom A has the same position in 
each subcell; atom B has an average position given by 
the vector ~B, but its position in individual subcells is 
~B+ A j, where j is 1, 2, 3 or 4 (see Fig. 2). The gener- 
alized atomic scattering factor for atom A is ¼fA~@] 

S 

which reduces to ¼fA for the main reflections and to 
zero for the difference reflections. The generalized 
atomic scattering factor for atom B is 

¼fB ~ #.~ exp (2niAj. B~). 
J 

In this example the main reflections have integer indices 
h and k (based on reciprocal vectors a*, b* of the sub- 
cell); the difference reflections have indices h+m/4 
and k, where m is an integer 1 < m < 3 and h and k are 
also integers. Each value of m characterizes one set of 
difference reflections. In Fig. 3 we show schematically 
the transforms of generalized atomic factors ~ for 
all three sets of difference reflections. In Fig. 3 each 
circle represents a displaced atom, labeled by a corre- 
sponding multiplier, ±a,m 4 . ~ s  • 

× 

× 

J 
× 

x 

× 

! 
× 

x 

× 

× 

ah 

× 

Fig. 1. A two-dimensional example, N1=3, N 2 = 4 ,  crosses 
indicate difference reflections corresponding to a set charac- 
terized by p = ~a + ¼b. 

AI Aa /X4 

Fig. 2. A two-dimensional example, NI = 4, N2 = |. Each subcell 
contains two atoms: atom A in the origin of each subcell, 
atom B at the end of position vectors ~B+A~ (i=1,2,3,4). 
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Fig. 4 shows schematic images of the transforms of 
the structure factors corresponding to individual sets 
of reflections. The transform based on structure fac- 
tors of the main reflections, the 'average structure', is 
shown in Fig. 4(a). Transforms of structure factors 
corresponding to different sets of difference reflections 
are shown in Fig. 4(b), (c) and (d). The transform based 
on all structure factors is the sum of all partial trans- 
forms, and it represents the original structure. 

In summary: the Fourier transform of the structure 
factors of a single set of difference reflections is the sum 
of the convolutions of the point functions (representing 
average atomic positions) with the transforms of the 
generalized atomic factors (carrying information about 
the differences among the subcells). In other words, in 
the map based on a single set of difference reflections, 
transforms of generalized atomic factors [given by 
equation (5)] rather than atomic electron density 
functions are centered at end points of average atomic 
position vectors. 

4. Patterson function based on difference reflections 

The Patterson function is defined as the Fourier trans- 
form of the squares of the absolute values of structure 
factors. Therefore, for difference reflections belonging 
to the ath set, we have 

a b c d 

• I / 4  + i / 4  

o - I / 4  -(~-- i / 4  

Fig. 3. Schematic representation of Fourier transforms of gen- 
eralized atomic factor ~'~. (a) A transforms corresponding to 
main reflections; (b), (c), (d) Transforms corresponding to dif- 
ference reflections characterized by m=1,2,3. • o ÷  
schematically represent atomic distributions multiplied by 
factors ¼, - ¼, i/4, - i/4 respectively. 

(a) (b) 

(c) (d) 

Fig. 4. Schematic representation of a Fourier transform of 
structure factors corresponding to main reflections (a) and 
to individual sets of difference reflections (b, c, d). 

m 2 

ua(n)= -~- Za~ T ~ *  exp (2n i (~p-~q-n) .  B~. (6) 
H p q  

As with equation (3) in the previous section, equation 
(6) can be transformed into a sum of convolutions: 

v a ( n ) =  v "a. "a RpcPpq. 
Pq 

Here, function R~  is 

1 
R ~ =  ~-~Y. ~upa ~ ,  exp (-- 2zci~l . B~) 

n 

and function P'r~ is 

P ~ =  m 2 Yg exp ( 2 z r i ( ~ p - ~ - ~ l ) .  B~). 
H 

Further, Rj,~ can be expressed as a convolution, 

1 
' a  __ a ,  R,~,, Rp,~- - ~ - R p  

and expanded as 

1 
R;~- mZ V2 2 @~@~,(1 + e,,) (1 + e~)O'paOl + A , , -  Aa~), 

rs  

(9) 

where Opa is the convolution of atomic electron density 
functions 0p and 0q. Here, function R~] has the same 
meaning as the convolution of atomic electron distribu- 
tion functions for ordinary Patterson maps. If e and 
A approach zero (for either atom p or q, or both), 
functions R~] vanish for all sets of difference reflections. 

Function P ~  can, in turn, be expressed as a sum of 
point functions: 

e~=rn  ~ ( g ~ - g ~ - n + r , ) .  a~*. (10) 
t 

Before examining the Patterson function of the ex- 
ample discussed in § 3, let us summarize the results. 
The Patterson function of the ath set of difference re- 
flections is the sum of the convolutions of the point 
functions (representing average interatomic vectors) 
with the convolutions of the transforms of the 
generalized atomic scattering factors. Therefore, peaks 
in the Patterson function based on a single set of dif- 
ference reflections are centered in the usual way at the 
end points of the average interatomic vectors, but they 
are convolutions of transforms of generalized atomic 
scattering factors (carrying information about displace- 
ments and substitutions distinguishing individual 
atomic positions in different subcells), rather than 
convolutions of electron density functions. 

To be more specific, let us now examine the Patter- 
son function of the two-dimensional example from 
§ 3. Functions R ~  are shown schematically in Fig. 5. 
Corresponding Patterson functions are shown schem- 
atically in Fig. 6. Fig. 6(a) represents the Patterson 
function based on the main reflections - the 'average 
Patterson';  Fig. 6(b), (c) and (d) shows Patterson func- 
tions based on individual sets of difference reflections. 
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The sum of all four partial Patterson functions is the 
Patterson function of the supercell, as expected (Fig. 7). 

5. Modulated structures 

One special case of difference reflections is the satellite 
reflections of a modulated structure [see Guinier 
(1963) and Korekawa (1967)]. The intensity of satellite 
reflections can be calculated easily in the usual way (for 
additional discussion of the material presented in this 
section, see the Appendix); an attempt is made here to 
show that the formulation using generalized atomic 
factors, described in previous sections, can also be 
applied in the case of this superstructure, making it 
very simple to calculate Fourier transforms of satellite 
intensities or amplitudes. 

Let us suppose that the axes of a supercell are chosen 
in such a way that 

and 

as = Nlla + Nlzb + Nl3c,  

bs = N21a + N22b + N23e 
c~ = N31a + N32b + N33e, 

where N, s are integers. Furthermore, let us assume that 
the displacements of atoms from average positions 
and their occupancies are determined by plane modula- 
tion waves with the wave vector perpendicular to face 
A of the supercell (there can be one or more wave- 
lengths of the modulation wave in the supercell). If 
the wave vector of this wave is Br the displacement of 
the ith atom in the sth subcell is 

Ajs = A s cos 2rc(rs. Br  + as) 

where A s is the vector indicating maximum displace- 
ment of atom j and c~j is the phase of the wave de- 
scribing its displacement. Similarly, for occupancies 
ejs we have 

es~=e s cos 2zc(r~. B r + ~ j ) .  

If  we accept the result derived in the Appendix (that 
for a structure modulated by a simple harmonic wave, 
satellites are located at BH + BT in reciprocal space) we 
obtain: 

¢~" = exp (2rcirs. BT) 
and 

~-'/j= --~ ~¢ [1 +~j cos 2zc(rs. B r + ~ j ) ]  

x exp [2zci(Aj. Bn cos 2zc(rs. Br  + ~j) + Is.  Br] • 

If  we expand the exponential functions and realize 
that Y. exp (2zir~. BT)= 0, we finally obtain: 

$ 

~j=½ej  exp (-T-2rcic~j)+lriAj. B~ exp (T-2rci~s) (11) 

which is identical to expression (12) in the Appendix. 
To calculate the Patterson function based on satellite 

intensities we use a procedure similar to that discussed 
in § 4. First, it is necessary to calculate functions R~$, 
a convolution of Fourier transforms of generalized 

atomic scattering factors ~0p and ~0~. These functions are 
then convoluted by sets of point functions given by 
equation (9), representing average interatomic vectors. 
The resulting Patterson function has the same properties 
as the more general Patterson function described in § 4. 
Unless all phases ~s and ctj are equal, Rj,] is complex. 
This means that the real and imaginary parts of the 
Patterson function can be calculated for each set of 
satellite reflections. This will be considered in more de- 
tail in the paper on plagioclase satellites immediately 
following this article. 

Let us examine properties of R~,] calculated for a 
rather special model. It may be assumed that the dis- 
placements of modulation waves for atoms p and q 
are parallel and of equal length, and that the con- 
voluted atomic distribution function 0' is a Gaussian 
function exp (-0-1~z). The phase difference between 
modulation waves for atoms p and q varies from 0 to 
n. The number of subcells in the direction parallel 
with the wave vector of the modulation wave is 13; the 
absolute value of displacement is 3 units. In this case, 
transform R~,] was not calculated from equation (11) 
but from the more exact equation (9). The results are 
shown in Fig. 8. A similar calculation was performed 
with a modulation wave consisting not of a single 
cosine wave but of an approximately square modula- 
tion wave (Fig. 9): 

cos 27~(rs. Br + c~j) - Ja-cos 2zr(3rs. Br + ~s) 
+ ½cos 2zr(5rs. Br + c~s) 

- 7Xcos 2zr(7rs. BT + eL,) +-~COS 2rc(9r~. Br + c~j). 

(a) 

I 
(b) 

Fig. 5. Schematic representation of functions R~ based on our 
0 0 0 two-dimensional example. Transforms R]A, R~B, R~A are 

shown in (a); transforms corresponding to reflections with 
m=0, 1, 2 and 3 are shown in (b). o, ©, •, [], • and 
schematically represent 0." functions multiplied by ¼, -¼, -~, 
- ~ , ~ ,  - ~ .  
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It is interesting to note that the form of the transform 
changed only slightly. This means that from an ex- 
amination of the Patterson function of satellite inten- 
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Fig. 6. Schematic representation of Fourier transforms of 
intensities corresponding to main reflections (a), and to 
individual sets of difference reflections (b, c, d). • ,  o ,  + ,  + ,  
m, o ,  A, zx, ~. and .~. represent Q' functions multiplied by 
1, --1, i, - i ,  ½, --½, ¼, -¼,  ¼i, --¼i. 

sities it is possible to infer reasonably reliable informa- 
tion concerning the 'short-range characteristics' of the 
modulation (directions and amplitudes of displace- 
ments and their phases), but we cannot expect to be 
able to differentiate between similar forms of modula- 
tion waves. 

The support of this work by the National Science 
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APPENDIX 

Let us calculate An(X), the amplitude of a wave dif- 
fracted by the unit cell of a modulated structure. The 
origin of this unit cell is at X; the position of the j th  
atom with respect to the origin of its unit cell is 

~j=~oj+ Aj cos 2~((X +~oj). By+~j), 
and it is associated with an atomic scattering factor 

f j  =~(1 + ej cos 2n(X + go j) .  By + g)) 

where goj is the average position vector of atom j, By 
is the wave vector of the modulation wave; phases 
gj and ~j are phases of the modulation of the atomic 
position of j th  atom and of its scattering factor respec- 
tively. The average atomic scattering factor of the j th  
atom is~.  Therefore, 

An(X)= ~ f j  exp [2ni(X+~j). B~], 
1 

where B~ is a reciprocal-space vector. 
By inserting for f j  and ~y and recognizing that Aj is 

much smaller than ~oj, we can approximate 

An(X)= ~ ( 1  +ej cos 2n[(X-l-~oy). Br+c~)]) 
J 

x {1 + 2niB~. Aj cos 2n[(X +Cog). By+~j]} 
× exp [2ni(X +~oj) • BH]. 

Neglecting a cross product containing ej and IAjI, 
we have 

An(X)=exp (2niX. B~). ~ exp (2ni~o.l. B~t) 
J 

® 
• • • • 

• • • • • • • • 

• • • 
• • • • 

• • • • • • • 

• • • • 

• • • • 

Fig. 7. Sum of functions from Fig. 6(a), (b), (c), (d), giving a 
schematic representation of a Patterson function based on all 
intensities, o ,  • and • represent convolutions ~,~, Q~n, Qsn, 
respectively. 
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Fig. 8. R~ for a modulated structure. Atoms p and q are displaced in the x direction by a simple cosine wave; amplitude, 3 units; 
phase difference between waves acting upon atoms p and q is 0, ¼rt, ½rt, ¼n, rt; (a), (b), (c), (d), (e) respectively. Real part of 
R~q, solid line; imaginary part of R~,~, broken line. For phase difference 0, imaginary part vanishes; for phase difference rt, 
real part vanishes; for phase difference }rr, both parts are numerically equal. 
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Fig. 9. R ~qfor a modulated structure. Atoms p and q are displaced in the x direction by an approximately square wave represented 
by 5 cosine terms. Total amplitude of displacement, 3 units; phase difference between waves modulating atoms p and q is the 
same as in the example in Fig. 8. Real part of R~, solid line; imaginary part of R~q, broken line. For phase difference 0, 
imaginary part vanishes; for phase difference n, real part vanishes. 
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+ exp [2z~iX. (B~ + Br)] ~ fj{½ei exp (2zcicej) Aps 
J 

+ ~ziB~. Aj exp (2zcic~j). exp [2rCi{oj. (B~ + Br)]} fp 

+exp [2~ix. (B;,-BT)] ~Z{½~J exp (-2.i~'j) 8,s 
J 

+ niB'n. A 2 exp (-21rio~j) BH 
BaH 

× e x p  [27~i~oj. (]3'1t-- BT)]}  • 
~a 

Summing further over the unit cells, the first term leads 
to sharp main reflections, the second and third terms 
lead to sharp satellite reflections located at BH + Br, 
where Bn is a reciprocal lattice vector based on the 
reciprocal-cell edges of the subcell. The generalized 
atomic scattering factor is 

fj(½ej exp (-2nio~j)+niAj. B~ exp ( - - 2 7 ~ i ~ j )  (12) 

for reflections at Bn+BT. For reflections at B H - B r  
signs change in the exponent of the phase factors of 
the generalized atomic scattering factor. 

Glossary of some more frequently used symbols 

a, b, c Base vectors of the subcell. 
a*, b*, c* Base vectors of the reciprocal lattice based on 

the subcell. 

Displacement vector of the pth atom in the 
sth subcell from its average position ~p. 
Average atomic scattering factor of the pth 
atom. 
Fractional increment of the atomic scattering 
factor of the pth atom in the sth cell. 
Reciprocal lattice vector of a main reflection. 
Reciprocal lattice vector of a difference re- 
flection of the ath set. 
Difference between B~ and BH. 
Phase factor of the contribution from the sth 
subcell to a difference reflection of the ath 
set. 
Generalized atomic scattering factor for dif- 
ference reflections of the ath set. 
Fourier transform of structure factors of re- 
flections belonging to the ath set. 
Patterson function based on intensities of 
reflections of the ath set. 
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The real and imaginary parts of Patterson functions based on 'e' and ' f '  satellites were calculated. In 
'e' satellite maps, Patterson interactions involving cations are most prominent and permit relatively 
simple calculation of the amplitudes and phases of 26 displacement modulation waves. The deformation 
of the silicate chain, which is apparently one of the major features of the plagioclase superstructure, is 
shown in detail. The interpretation of the ' f '  satellite Patterson function is less straightforward, but it 
shows clearly that the associated displacements are of very small amplitude, directed along [02~] and 
that they do not involve Na/Ca cations. 

1. Introduction 

In two earlier papers (Toman & Frueh, 1971; 
Toman & Frueh, 1972 henceforth referred to as TF1 
and TF2) the nature of the plagioclase superstructure 
was examined by studying the statistical distribution 
of the intensities of satellite reflections. The chemical 
composition of the sample examined in these two 

papers corresponds to a plagioclase with 55% anor- 
thite, and the results formulated there can be condensed 
as follows: 

(a) The intensity distributions of 'e' satellites (for 
terminology see Bown & Gay, 1958, or TF1) and of 
~f' satellites are qualitatively very different, suggesting 
that the 'e' and ~f' satellites are related to entirely dif- 
ferent aspects of the superstructure. 

A C 29A - 2 


